Packet Tracer. Настройка сетей VPN (дополнительно)

Топология

Таблица адресации

Устройство	Интерфейс	IP-адрес	Маска подсети	Шлюз по умолчанию
R1	G0/0	192.168.1.1	255.255.255.0	Недоступно
	S0/0/0	10.1.1.2	255.255.255.252	Недоступно
	G0/0	192.168.2.1	255.255.255.0	Недоступно
R2	S0/0/0	10.1.1.1	255.255.255.252	Недоступно
	S0/0/1	10.2.2.1	255.255.255.252	Недоступно
	G0/0	192.168.3.1	255.255.255.0	Недоступно
R3	S0/0/1	10.2.2.2	255.255.255.252	Недоступно
ПК А	NIC	192.168.1.3	255.255.255.0	192.168.1.1
ПК В	NIC	192.168.2.3	255.255.255.0	192.168.2.1
ПК С	NIC	192.168.3.3	255.255.255.0	192.168.3.1

Параметры политики 1 фазы ISAKMP

Параметры		R1	R3
Метод распространения ключей	Вручную или с помощью ISAKMP	ISAKMP	ISAKMP
Алгоритм шифрования	DES, 3DES или AES	AES	AES
Алгоритм хеширования	MD5 или SHA-1	SHA-1	SHA-1
Метод аутентификации	Общие ключи или RSA	pre-share	pre-share
Обмен ключами	Группа DH 1 , 2 или 5	DH 2	DH 2
Время жизни IKE SA	86400 секунд или меньше	86400	86400
Ключ ISAKMP		cisco	cisco

Параметры по умолчанию выделены **полужирным** шрифтом. Другие параметры необходимо указать явным образом.

Параметры политики 2 фазы IPsec

Параметры	R1	R3
Набор преобразований	VPN-SET	VPN-SET
Имя узла пира	R3	R1
IP-адрес пира	10.2.2.2	10.1.1.2
Сеть, трафик которой шифруется	192.168.1.0/24	192.168.3.0/24
Имя для криптографического conocтавления (crypto map)	VPN-MAP	VPN-MAP
Установка SA	ipsec-isakmp	ipsec-isakmp

Задачи

- Часть 1. Включение функций безопасности
- Часть 2. Настройка параметров IPsec на маршрутизаторе R1
- Часть 3. Настройка параметров IPsec на маршрутизаторе R3
- Часть 4. Проверка работы VPN IPsec

Сценарий

В этом задании необходимо на двух маршрутизаторах настроить поддержку межузловой сети VPN с использованием IPsec для трафика, проходящего между их соответствующими локальными сетями. IPsec-трафик VPN будет проходить через другой маршрутизатор, который не знает об использовании VPN. IPsec обеспечивает передачу конфиденциальной информации в защищённом режиме по незащищённым сетям, таким как Интернет. IPsec действует как протокол сетевого уровня, обеспечивая защиту и аутентификацию IP пакетов между участвующими в связи устройствами IPsec (равноправными узлами), такими как маршрутизаторы Cisco.

Часть 1: Включение функций безопасности

Шаг 1: Активируйте модуль securityk9.

Для выполнения этого задания должна быть включена лицензия пакета технологий обеспечения безопасности (Security) на маршрутизаторах R1 и R3.

Примечание. В качестве пароля как пользовательского, так и привилегированного режима используется **cisco**.

a. Введите команду **show version** в пользовательском или привилегированном режиме, чтобы убедиться, что лицензия пакета технологий безопасности активирована.

Technology	Technology-package		Technology-package
	Current	Туре	Next reboot
ipbase	ipbasek9	Permanent	ipbasek9
security	None	None	None
uc	None	None	None
data	None	None	None

Configuration register is 0x2102

b. Если это не так, активируйте модуль **securityk9** для следующей загрузки маршрутизатора, примите лицензию, сохраните настройку и перезагрузите маршрутизатор.

R1(config) # license boot module c2900 technology-package securityk9

R1(config)# end

R1# copy running-config startup-config

R1# reload

с. После перезагрузки снова выполните команду **show version** для проверки активации лицензии пакета технологий безопасности.

Technology	Technology-package		Technology-package
	Current	Туре	Next reboot
ipbase	ipbasek9	Permanent	ipbasek9
security	securityk9	Evaluation	securityk9
uc	None	None	None
data	None	None	None

Technology Package License Information for Module: 'c2900'

d. Повторите шаги 1а-1с для маршрутизатора R3.

Часть 2: Настройте параметры IPsec на маршрутизаторе R1

Шаг 1: Проверьте связь.

Отправьте эхо-запрос с ПК А на ПК С.

Шаг 2: Определите интересующий трафик на маршрутизаторе R1.

Настройте ACL-список 110 таким образом, чтобы определить трафик из локальной сети на маршрутизаторе **R1** до локальной сети на маршрутизаторе **R3** как интересующий. Данный интересующий трафик будет активировать VPN IPsec при наличии трафика между локальными сетями маршрутизаторов **R1** и **R3**. Весь остальной трафик, передаваемый из этих локальных сетей, шифроваться не будет. Помните о действии неявного запрета «deny any» и о том, что добавлять данное правило в список не требуется.

```
R1(config)# access-list 110 permit ip 192.168.1.0 0.0.0.255 192.168.3.0 0.0.0.255
```

Шаг 3: Настройте параметры 1 фазы ISAKMP на маршрутизаторе R1.

Настройте на маршрутизаторе **R1** свойства криптографической политики ISAKMP **10**, а также общий ключ шифрования **cisco**. Конкретные параметры, подлежащие настройке, приведены в таблице настроек 1 фазы ISAKMP. Значения по умолчанию настраивать не нужно, поэтому требуется настроить только шифрование, способ обмена ключами и метод DH.

```
R1(config)# crypto isakmp policy 10
R1(config-isakmp)# encryption aes
R1(config-isakmp)# authentication pre-share
R1(config-isakmp)# group 2
R1(config-isakmp)# exit
R1(config)# crypto isakmp key cisco address 10.2.2.2
```

Шаг 4: Настройте параметры 2 фазы ISAKMP на маршрутизаторе R1.

Создайте набор преобразований (transform-set) **VPN-SET** для использования **esp-3des** и **esp-sha-hmac**. Затем создайте криптографическое сопоставление (crypto map) **VPN-MAP**, которое связывает вместе все параметры 2 фазы. Используйте порядковый номер **10** и определите его в качестве сопоставления **ipsec-isakmp**.

```
R1(config)# crypto ipsec transform-set VPN-SET esp-3des esp-sha-hmac
R1(config)# crypto map VPN-MAP 10 ipsec-isakmp
R1(config-crypto-map)# description VPN connection to R3
R1(config-crypto-map)# set peer 10.2.2.2
R1(config-crypto-map)# set transform-set VPN-SET
R1(config-crypto-map)# match address 110
R1(config-crypto-map)# exit
```

Шаг 5: Настройте криптографическое сопоставление для исходящего интерфейса.

Наконец, привяжите криптографическое сопоставление **VPN-MAP** к исходящему интерфейсу Serial 0/0/0. **Примечание.** Данный этап не оценивается.

```
R1(config)# interface S0/0/0
R1(config-if)# crypto map VPN-MAP
```

Часть 3: Настройка параметров IPsec на маршрутизаторе R3

Шаг 1: Настройте маршрутизатор R3 для поддержки сети VPN между площадками с маршрутизатором R1.

Теперь настройте параметры передачи на обоих направлениях маршрутизатора **R3**. Настройте ACLсписок **110** так, чтобы определить трафик из локальной сети маршрутизатора **R3** до локальной сети маршрутизатора **R1** как интересующий.

```
R3(config)# access-list 110 permit ip 192.168.3.0 0.0.0.255 192.168.1.0 0.0.0.255
```

Шаг 2: Настройте параметры 1 фазы ISAKMP на маршрутизаторе R3.

Настройте на маршрутизаторе **R3** свойства криптографической политики ISAKMP **10**, а также общий ключ шифрования **cisco**.

```
R3(config)# crypto isakmp policy 10
R3(config-isakmp)# encryption aes
R3(config-isakmp)# authentication pre-share
R3(config-isakmp)# group 2
R3(config-isakmp)# exit
R3(config)# crypto isakmp key cisco address 10.1.1.2
```

Шаг 3: Настройте параметры 2 фазы ISAKMP на маршрутизаторе R1.

Аналогично действиям для маршрутизатора **R1**, создайте набор преобразований (transform-set) **VPN-SET** для **esp-3des** и **esp-sha-hmac**. Затем создайте криптографическое сопоставление (crypto map) **VPN-MAP**, которое связывает вместе все параметры 2 фазы. Используйте порядковый номер **10** и определите его в качестве сопоставления **ipsec-isakmp**.

```
R3(config)# crypto ipsec transform-set VPN-SET esp-3des esp-sha-hmac
R3(config)# crypto map VPN-MAP 10 ipsec-isakmp
R3(config-crypto-map)# description VPN connection to R1
R3(config-crypto-map)# set peer 10.1.1.2
R3(config-crypto-map)# set transform-set VPN-SET
R3(config-crypto-map)# match address 110
R3(config-crypto-map)# exit
```

Шаг 4: Настройте криптографическое сопоставление для исходящего интерфейса.

Наконец, привяжите криптографическое сопоставление **VPN-MAP** к исходящему интерфейсу Serial 0/0/1. **Примечание**. Данный этап не оценивается.

R3(config)# interface S0/0/1

R3(config-if)# crypto map VPN-MAP

Часть 4: Проверка работы VPN по IPsec

Шаг 1: Проверьте туннель до прохождения по нему интересующего трафика.

Введите команду **show crypto ipsec sa** на маршрутизаторе **R1**. Обратите внимание, что количество всех пакетов (инкапсулированных, зашифрованных, декапсулированных и дешифрованных) равно 0.

R1# show crypto ipsec sa

```
interface: Serial0/0/0
   Crypto map tag: VPN-MAP, local addr 10.1.1.2
   protected vrf: (none)
   local ident (addr/mask/prot/port): (192.168.1.0/255.255.0/0/0)
   remote ident (addr/mask/prot/port): (192.168.3.0/255.255.255.0/0/0)
   current peer 10.2.2.2 port 500
   PERMIT, flags={origin is acl,}
   #pkts encaps: 0, #pkts encrypt: 0, #pkts digest: 0
   #pkts decaps: 0, #pkts decrypt: 0, #pkts verify: 0
   #pkts compressed: 0, #pkts decompressed: 0
   #pkts not compressed: 0, #pkts compr. failed: 0
   #pkts not decompressed: 0, #pkts decompress failed: 0
   #send errors 0, #recv errors 0
    local crypto endpt.: 10.1.1.2, remote crypto endpt.:10.2.2.2
     path mtu 1500, ip mtu 1500, ip mtu idb Serial0/0/0
    current outbound spi: 0x0(0)
<Данные опущены>
```

Шаг 2: Создание интересующего трафика.

R1# show crypto ipsec sa

Отправьте на компьютер ПК С эхо-запрос от компьютера ПК А.

Шаг 3: Проверьте туннель после прохождения интересующего трафика.

На маршрутизаторе **R1** повторно введите команду **show crypto ipsec sa**. Теперь обратите внимание, что количество пакетов стало больше 0. Это означает, что туннель сети VPN по IPsec работает.

```
interface: Serial0/0/0
   Crypto map tag: VPN-MAP, local addr 10.1.1.2
  protected vrf: (none)
  local ident (addr/mask/prot/port): (192.168.1.0/255.255.255.0/0/0)
  remote ident (addr/mask/prot/port): (192.168.3.0/255.255.255.0/0/0)
  current peer 10.2.2.2 port 500
   PERMIT, flags={origin is acl,}
  #pkts encaps: 3, #pkts encrypt: 3, #pkts digest: 0
  #pkts decaps: 3, #pkts decrypt: 3, #pkts verify: 0
  #pkts compressed: 0, #pkts decompressed: 0
  #pkts not compressed: 0, #pkts compr. failed: 0
  #pkts not decompressed: 0, #pkts decompress failed: 0
  #send errors 1, #recv errors 0
    local crypto endpt.: 10.1.1.2, remote crypto endpt.:10.2.2.2
    path mtu 1500, ip mtu 1500, ip mtu idb Serial0/0/0
    current outbound spi: 0x0A496941(172583233)
<Данные опущены>
```

Шаг 4: Создание не интересующего трафика.

Отправьте на ПК В эхо-запрос от ПК А.

Шаг 5: Проверка туннеля.

На маршрутизаторе **R1** повторно введите команду **show crypto ipsec sa**. Наконец, обратите внимание, что количество пакетов не изменилось. Это означает, что не интересующий трафик не шифруется.